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1 Introduction 

The overall scope of SMILE project is to demonstrate, in real-life operational conditions, a set of both 
technological and non-technological solutions adapted to local circumstances targeting distribution 
grids to enable demand response schemes, smart grid functionalities, storage and energy system 
integration with the final objective of paving the way for the introduction of the tested innovative 
solutions in the market in the near future. To this end, three large-scale demonstrators are under 
implementation in three European islands with similar topographic characteristics but different 
policies, regulations, and energy markets: Orkneys (UK), Samsø (DK), and Madeira (PT). 

The purpose of this deliverable is to evaluate the appropriate demand response (DR) programs 
applicable to the Samsø demonstrator. The report will describe the outcome of the trials and the 
demonstration of the demand response methods set up in the SMILE work-package 5 (WP5) in the real 
application. It will moreover include an assessment of the control methods based on market price 
signals developed with input from SMILE work-package 8 (WP8) dealing with the analysis of the energy 
system impacts, energy strategies and energy market design. 

This report is made as an extension of the preliminary version named D3.6. In particular, the 
section 7 “DR evaluation and market perspectives in Marina” has been added to the initial version 
D3.6, to demonstrate the applicability of proposed demand response and evaluating the market signals 
for the real energy system of Ballen’s Marina.  

The report is structured as follows. Regarding the demand response (DR) solutions for Ballen 
Marina, first in section 2, the initial academic solution for the control of the marina is described. 
However, during the evolution of the project, it has been realized that some of the original presented 
ideas here for the supervision and control, has proven not efficient or realistic to be implemented by 
considering also the services that the Marina is currently envisaging to provide to its customers. For 
this reason, alternative solutions are proposed in the next sections. In section 3, forecast methods are 
set up by Route Monkey, they have been tested as discussed in section 7. Section 4 describes the 
scheduler set up by Lithium Balance.  Section 5 describes the physical set up in Ballen Marina. In section 
6 simulations are performed by AAU to justify some of the set up algorithms before the final 
implementation. Section 7 describes the final implemented system at Ballen Marina. Section 8 and 9 
include the conclusion and references, respectively. 
 
 

1.1 Inputs from other deliverables 

In connection with this deliverable, the inputs are considered from the public deliverable D5.11 (OVO) 
about appropriate Demand Respond (DR) services, as well as from the confidential deliverables D5.2 
(Route Monkey) about the predictive algorithms for DR services, D5.3 (Route Monkey) about the smart 
integration of electric vehicles (EVs) and D5.5 (RINA Consulting) about improved control and 
automation of the distribution network including renewable sources and demand side management. 
For the final section 7 also input from the deliverable D3.7 (AAU/ET) about overall energy system 
control at the Samsø pilot, as well as input from D5.7 on algorithms for smart integration of storages 
has been used as background information when writing the final evaluation.  
 

 
 
 
1 https://cordis.europa.eu/project/id/731249/results 
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1.2 Contribution from partners 

The following SMILE partners contributed in various sections in this document. 
1 Appropriate DR to the Samsø demonstrator is defined by OVO partners as a part of WP5 and is 
included in section 2. The content is taken from D5.1. 
2 Route Monkey described their forecasting algorithms and its accuracy in section 3. 
3 Lithium Balance provided the working of BESS scheduling in section 4. 
4 In section 5, relevant contribution from Samsø Energy Academy (SE) is added.  
5 Aalborg University (AAU/ET) are the leader for this deliverable, they have coordinated in writing the 
report and formulated section 6. 
6 AAU/ET has collected material from SE, Lithium Balance and used content from D3.7 and D5.7 for 
setting up the final evaluation of the set up system at Samsø pilot in section 7. 
7 Finally, the conclusions from this deliverable are listed in the section 8 followed by references that 
are used in the document in section 9. 
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2 Samsø’s objective 

With its highest share of renewable energy sources (RES) in its total power production, Samsø is 
working on maximizing the local penetration of renewable generation by implementing appropriate 
DR programs for power consumers in the Marina. Thereby, minimizing the dependency on grid and 
cost of electricity.  

2.1 Marina behaviour and proposed DR: Initial academic solution 

The marina witnesses more tourist sailors especially during summer and other holidays, leading to an 
increase in load. The peak load caused by these boats are to be managed by both the photo-voltaic 
(PV) and battery storage system (BESS) along with support from the grid whenever it is necessary. Both 
the PV and BESS systems have been already installed at the Marina during the first 24 months of the 
SMILE project. The Solar-PV system is rated at 60 kWp, BESS system of 240 kWh energy capacity with 
inverter of 50 kW power rating. Accordingly, for peak load management, Time of Use (TOU) DR was 
found to be appropriate according to the theoretical studies, for the Marina users including boats and 
other controllable loads. Furthermore, the users could for example, receive lower fees, if their 
consumption was adjusted not only in accordance with the peak load, but also to match with the PV 
generation. 
To elaborate the functioning, whenever boat owners’ charges during midday where there is more PV 
generation, then they would be given more points counting to more discount for adjusting their 
demand in accordance with not only peak hours but also to match the PV system generation. It should 
be remarked, that the intention was not to fully interrupt the loads, merely to adjust their consumption 
to a maximum level, ensuring that they have access to a certain level of kW all day. The overall 
envisaged control architecture is shown in Figure 2.1. 

 

Figure 2.1 Overall control architecture for Ballen-Marina demonstration 
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The smart supervisor proposed by Route Monkey was expected to be responsible for forecasting the 
Solar-PV production and Marina load through machine learning techniques. This information could 
further be used to find the desired state of charge (SOC) for the BESS and passed onto scheduler that 
is derived by Lithium Balance. The scheduler then would send ON/OFF commands to the controller, 
which further executes this operation directly on flexible loads. The direct controller represents a 
device from Compusoft, which in turn should process the ON/OFF commands and would send 
green/yellow signals to boat owners through a mobile app. It was the wish that boat owners respond 
to these signals. Nevertheless, the consumers responding to these signals were expected to be granted 
attractive discounts for their shifted consumption. However, as it will be discussed in section 7 about 
the real implementation, anthropological studies showed, that this activation of the both owners 
would not be attractive for them, why this solution was not implemented in the final demonstration. 
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3 Route Monkey: Forecasting algorithms 

Route Monkey (RM) have produced two key streams of forecasts to support the Samsø demonstrator; 
these are the demand forecast, which estimates future load at the harbour, and the PV forecast, which 
directly estimates the future power available from the harbour’s PV installation. In both cases, the 
forecast provides 24 future data points, one for each hour from T+1 to T+24, where T is the ’current’ 
time, or the time that the forecast is made. Each forecast is made available via an API, which enables 
upstream use of the forecast by planning algorithms and controllers, such as the Libal scheduler. In the 
remainder of this section, we outline how the forecasts are produced, provide estimates on their 
accuracy, and also provide details of the APIs. 

3.1 Harbour Load Forecasting 

Load data for the harbour at Samsø is provided by Compusoft, who have made a secure API available 
to RM. This API provides a meter reading (whose timestamp can be assumed to be the time it was 
called), which is taken to be accumulated consumption at the harbour. RM polls this Compusoft API 
regularly, and infers point demand values in kW at hourly intervals. Figure 3.1 illustrates this, showing 
the kW demand values inferred at the harbour for the 30 days to April 27th. 
 

 

 Figure 3.1– Harbour load (in red) inferred from meter readings provided by Compusoft API. 

Note that figure 3.1 also shows demand from boats alone, which is also indicated on a separate meter 
by the Compusoft API, however this is not used since there are currently discussions concerning its 
accuracy. 
 
RM operates hourly machine learning, to produce 24 separate forecast models for harbour load, 
respectively predicting load at 1, 2, …, 24 hours ahead. These forecasts are shown on the dashboard 
available to SMILE participants, as indicated in Figure 3.2, and are provided via the API described in 
section 3.3. The general algorithm machinery behind the machine learning and forecasting was 
detailed in deliverable D5.2 “Predictive Algorithms for DR Services”.  In the current report, we will 
summarise the details by indicating general characteristics of the setup for the harbour at Samsø and 
providing an indication of the accuracy levels. 
 
Each of the forecasts is based on a model which maps a historical window of load values to the forecast 
value.  The historical window always contains the current load value (at time T) along with a number 
of recent values (typically T−24, and then T−6, T−5, T−4, .…, T−1).  The machine learning algorithm used 
is gradient boosting (an ensemble decision tree method) as implemented in the python scikit-learn 
toolkit. The model is built using 21 days of training data (70% for training, 30% for validation). 
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Figure 3.2– Forecasts of Harbour load (in red) produced by RM machine learning. 

 
Figure 3.3 shows the current typical forecast accuracy profile for harbour forecasts from 1hrs ahead to 
24hrs ahead, where the vertical axis is the mean absolute error in kW.  This corresponds to errors in 
respect to 10% to 20%, which reflects partly the general volatility of demand in a relatively small 
community, but also reflects the changes in demand currently happening as a result of the Covid-19 
pandemic.  
 
 

 

Figure 3.3– Illustrating Accuracy of Harbour load forecasting towards end of April 2020   

3.2 Harbour PV Forecasting 

PV data for the harbour at Samsø is provided by Lithium Balance, who have given RM access to APIs 
that query their IoT platform for the appropriate variables. This API provides a direct PV reading which 
RM accesses every 5 minutes.  The red line in Figure 3.4 shows these measurements over a recent 
four-day period.  
 
As mentioned in the harbour load forecasting section, RM again operates hourly machine learning, to 
produce 24 separate forecast models, respectively predicting it at 1, 2, …, 24 hours ahead. These 
forecasts are provided via the API outlined in section 3.3 and arise from the predictive analytics 
platform that was detailed in deliverable D5.2 “Predictive Algorithms for DR Services”.  In the current 
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report, we will summarise the details by indicating general characteristics of the current setup and 
briefly discuss accuracy. 
 
To forecast PV, the key factor is to forecast cloud cover; PV values can then be forecast by using the 
cloud cover forecast in conjunction with a mapping between the ‘clear sky’ irradiation level (which can 
be calculated exactly for any given location and time) and the power characteristics of the PV 
installation in question.  In our case, the inputs to the machine learning model at time T, for a forecast 
A hours ahead, are: the forecast cloud cover at T+A, the ‘clear sky’ irradiation at T+A, the cloud cover 
at T, clear-sky irradiation at T, and the PV power at T. The latter three features enable the machine 
learning algorithm to build a model of the characteristics of the particular PV installation.  The machine 
learning algorithm used is gradient boosting (again, shown to be generally the best performing 
approach in preliminary tests), and we use a window of 21 days of training data (70% for training, 30% 
for validation) 
 

 

Figure 3.4– PV measurements compared with forecasts (figure provided by Libal/Xolta) 

Figure 3.4 shows a recent evaluation of the PV forecasting, done by Lithium Balance using the API 
described in section 3.3. This revealed a broad correspondence between actual and forecast power, 
although showed up issues at night-time (where small levels of power were wrongly forecast), and a 
general underestimate of available power at later hours. These issues have been addressed along with 
ongoing refinements to the forecasting models. Route Monkey provides harbour load and PV forecasts 
via a password-protected RESTful API 
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4 Scheduler  

4.1 Input data 

To set up the scheduler there are three types of input data for the optimization model: forecast, 
telemetry, and configuration data. In this section, the three types of data are introduced. 
 

4.1.1 Forecast data 

The data that needs to be forecasted are Marina load, Solar-PV production profile and the electricity 
price. 

4.1.1.1 Load forecast 

User demand has strong connection with season, weather, user behavior and so on [1]. In order to 
have accurate forecast, historical data of user demand and third-party weather forecast should be 
used to produce load forecast. In this project, load forecast of Samsø harbor is produced by partner 
Route Monkey. The data is hourly based with a horizon of 24 hours. A new update comes every hour 
to correct the prediction from the previous hour. 

4.1.1.2 PV production forecast 

PV production data is very sensitive. It is firmly tied to the weather, location, and the mounting angle 
of solar panels and so on [2]. In order to increase the forecast accuracy, besides historical PV 
production data, a third-party weather forecast which contains information such as solar irradiance, 
wind speed, cloudiness and temperature is recommended to include in the PV forecast algorithm. The 
PV forecast data received within the project is delivered by Route Monkey. Similar to the load forecast, 
it is hourly based data with 24 hours horizon and a new update is sent every hour. 

4.1.1.3 Electricity price forecast 

Electricity price forecast is normally based on spot market price or pre-determined pricing scheme.  
Spot market price is an equilibrium of demand (willing to buy) and supply (willing to sell). It varies from 
time to time, which can illustrate the grid congestion situation from another angle. However, from 
user’s point of view spot market price still has some distance to the real electricity price, which is 
missing VAT, transportation, and other service fee. In this project, Samsø site is currently using a flat 
price scheme, this diminishes the impact from price variation to the final optimization result. 
Nevertheless, the optimization model is made to take variable price situation that may happen in the 
further into account. The variable price can either come from a third-party spot market price API or 
produced as forecast from partners within the project. 

4.1.1.4 Feed-in tariff  

Electricity selling price in this project means the solar feed-in tariff – that is the price of excess 
renewable energy which are to be sold to the grid. There are different prices and policies in different 
countries regarding feed-in tariff. Due to the increase of solar energy penetration, policies are also 
changing from time to time. In general, the feed-in tariff can be split into 2 scenarios: zero tariff and 
non-zero tariff. When the tariff is zero, the optimization model will help the user to avoid injecting 
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excess solar energy to the grid in order to maximize their renewable consumption and consume less 
electricity from the grid. When the tariff is not zero, depending on the difference between electricity 
price and the tariff, the optimization model will find the correct time to inject power to the grid to 
make some profit. During the SMILE project, the feed-in tariff was constant, but it will switch to the 
spot market price in the near future according to the current policy in Denmark.  
 

4.1.2 Telemetry data 

Telemetry data are BESS related data provided by the Xolta system (BESS from Lithium Balance). One 
of the most important data from BESS is the battery state of charge. Optimization needs to have the 
knowledge of battery current status in order to decide how much energy it can take or give. It is both 
for better utilization of the BESS and for safety of the system operation. The Xolta system in Samsø 
updates telemetry reading every 10 seconds and the optimization model will always take the latest 
update into its calculation.  
 

4.1.3 Configuration data 

Configuration data contains site information such as location, grid configuration, renewable 
installation and BESS dimension. These data are normally obtained during the BESS commissioning 
period and are later carefully stored in the Xolta cloud database. Any physical changes on site regarding 
the electricity network needs to be updated to the Xolta cloud database to ensure the system safety 
operation.  

4.2 Output data 

With the above input, the optimization model will produce a charge/discharge schedule accordingly. 
Depending on the forecast input resolution and horizon, the output will keep the shape. In the SMILE 
project, the forecast inputs are hourly based 24 hours long data, this returns an output of a 
charge/discharge instruction with 24 set points as shown in Figure 4.1 

 

Figure 4.1- Optimization model output illustration 
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This charge schedule is expected to be packed into a specific format and send to the site controller 
which is the local control unit in the Xolta system. Once the site controller receives a new charge 
schedule, it will check the timestamp and act upon. Currently the optimization model is running every 
15 mins, so that it can rematch the battery state of charge in case the forecast deviate too much from 
the reality. However, this 4 times per hour run brings another challenge to the optimization model. 
The mismatch updating rate and resolution of the forecast data cannot always cover the need of input 
data horizon for the optimization algorithm. There will often be a 15-45 mins forecast data lacking for 
each run. This aspect was then negotiated with Route Monkey to have a 24h horizon forecast in the 
future to solve the problem. 

4.3 Optimization algorithm 

The objective of the optimization of the BESS usage is to minimize the overall cost of energy consumed, 
which includes maximize the profit from selling excess solar energy and maximize the renewable self-
consumption. This is done by operating the ESS (charging and discharging the energy storage) in the 
most optimal way, based on the available information introduced in section 4.1 . The optimization will 
be based on forecasted information that may be not precise. Therefore, the operation of the BESS may 
not turn out to be optimal under the actual conditions (actual consumption and production).  
 
The optimization model algorithm is formulated as a mixed integer linear programming (MILP) 
problem and consists of an objective function and a set of constraints. The objective function aims at 
minimizing energy bill for the user. The constraints are formed by different technical and economical 
limitations of the energy storage system, which includes energy balancing, energy storage operation 
constraints, grid-side constraints and so on. Besides the main objective, the overall performance of the 
optimization model should also give impact to: 

• maximize renewable self-consumption 

• relieve power congestion in the grid 

• charge BESS when electricity market price is low 

• consider battery cycles and be aware of battery operational lifetime 
A test result of the optimization model can be seen in Figure 4.2. The battery model used in this test 
has a capacity of 9.6 kWh and power of 6.4 kW 

 

Figure 4.2- Optimization model test result illustration 
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The test above simulates the optimization model result of a low solar production day. When the solar 
production is much lower than the demand, user will have to purchase power from the grid. As 
electricity price varies during the day, battery is charged when the price is low, and the stored energy 
is used to support the load when price peaks. The corresponding battery state of charge can be seen 
in Figure 4.3. 

 

Figure 4.3- Optimization test result of battery state of charge 

4.3.1 Optimization algorithm extension 

The optimization model is developed with a focus on controlling the battery behaviour only. The next 
step of the development is including demand side management into the model as requested from the 
project. Three controllable loads on site, heat pump, sauna, and wastewater pump, will be added into 
the current model and will be turned on and off according to the optimization result. The on/off control 
schedule will follow the same format as ESS charge schedule with 24 control set points, and it will be 
sent to the technician on site for executing the control. 

4.4 Implementation 

 

Figure 4.4- A system view of optimization model 

The optimization model is implemented in Python as a mix integer linear programming (MILP) problem 
using the Pyomo [3] package with GLPK [4] as solver. The model contains continuous real variables, 
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integer variables, and binary variables. A number of input parameters such as electricity price, demand 
forecast, PV production forecast, and feed-in tariff are used to determine the energy storage behaviors 
and return the optimal BESS charging/discharging schedule for the next day as shown in Figure 4.4. 
The optimization model solution resides in a docker image based on python:3.6-jessie (linux/amd). In 
this project an Intel x86 processor has been chosen for the hardware implementation, with an Ubuntu 
Linux OS and Docker run time installed. In operational mode, the model collects needed data via REST 
calls from the API endpoints provided by Route Monkey and utilizes MQTT protocol to retrieve needed 
input data from the site controller such as ESS SoC value. Based on the inputs the optimization model 
computes the ESS control setpoints and publishes them as MQTT messages through TCP/IP to the site 
controller. 
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5 Samsø Ballen Marina  

The data set for Marina is provided by Samsø Energy Academy. The overview of Ballen Marina is 
shown in figure 5.1. 
 

 

 Figure 5.1-Ballen-Marina  

 

Figure 5.2– Present data in the Marina working system 

Figure 5.2 shows the BESS SOC, PV production, Inverter power and grid export/import for March 2020 
month. It can be observed that the BESS is charged to 100% from Solar PV production. There are times 
in the first half of March, where power import from grid has taken place. In addition, the power is also 
exported into the grid at around Mar 15th. The present data for the BESS and PV system is shown in 
Figure 5.2.  Selling to grid is not encouraged, as the price to sell the electricity is low. So, the BESS is to 
be scheduled so that it maximizes the self-consumption of solar-PV. Buying from grid is unavoidable 
due to present size of Solar, which could not be able to cover the annual demand. 
The current control operation is based on the following simple algorithm: 
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If PV > demand  
If BESS < SOCmax, charge the battery, Else sell to grid, end 

Else  
If BESS > SOCmin, discharge the battery, Else buy from grid, end 

end 

The same algorithm is used for BESS scheduling that will be discussed in Section 6.1. In this way, the 
self-consumption of solar-PV will be increased and with the introduction of the potential flexible loads 
that are present in the service building and harbour master’s office it is expected to further maximize 
the local consumption of solar production, thereby reducing the export of solar energy back into the 
public grid. The details of the Marina site are as given in the Table 5.1. 

Table 5.1 – Component details of Ballen-Marina 

Specifikationer (dansk)  Specifications (English) 

Målt selvforsyningsgrad 43% Measured degree of self-
supply 

Samme, uden batteri 26% Same, without the battery 

Målt egetforbrug af 
solcellernes årlige energi 

89% Measured own consumption 
of annual PV energy 

Samme, uden batteri 45% Same, without the battery 

Batteriets nominelle kapacitet 237 kWh (Xolta BAT-79) Nominal capacity of battery 

Batteriets brugbare kapacitet 211 kWh Accessible capacity of battery 

Årlig system-virkningsgrad (AC-
AC)  

85% Annual system round-trip 
efficiency (AC-AC) 

Batteri-konverterens effekt 49 kW (ABB ESI-S) Battery converter power 

Solcellernes nominelle effekt 60 kWp (Eurener) PV plant nominal power 

Solcelle-inverternes effekt 49 kW (Fronius, Enphase 
Energy) 

PV inverter power 

Solcellernes beregnede ydelse 56 000 kWh/year (Better 
Energy) 

PV plant estimated annual 
yield 

Solcellernes areal 155 m2 (Better Energy)  PV plant area 

Lystbådehavnens elforbrug 
(2016) 

105 000 kWh/year (NRGi) Marina annual demand (2016) 

Antal stik til bådene 340 (CompuSoft, Seijsener) Sockets for the boats 

Hvert stik har en elmåler og en 
fjernstyret afbryder 

(Compusoft, Seijsener) Each socket has a meter and a 
remotely controlled switch 

Maximal tilladelig eksport til 
det offentlige elnet 

49 kW (KONSTANT Net A/S) Max allowed export to the grid 

Antal varmepumper 5 (Daikin) Number of heat pumps 

Varmepumpe dækning i 
havnekontoret 

100 % Heat pump coverage in 
harbour master’s office 

Fjernvarmeforbrug i 
toiletbygningen 

18 000 kWh/year (Ballen-
Brundby Fjernvarme amba) 

District heating consumption 
of the service building 

Spildevandstank 2 m3 (Xylem, Inc.) Wastewater tank 

Sauna i badebygningen 15 kW (SAWO, Inc.) Sauna in the service building 

Ladestik til havnefogedens 
elbil 

11 kW Charging point for the harbour 
master's electric vehicle 

Ladestik til 3 dele-elbiler 16 amp (Lasses Auto) Charging sockets for 3 rental 
electric vehicles 

Link til betalingssystemet cpay.dk/site/marsamb Link to the payment system 

https://cpay.dk/site/marsamb?fbclid=IwAR0uNaE7BpkWB0aBb5tt6AAFkmuqcLWtwtaRGgvZ-D1YxY7MRmJLuH_Ok3Q
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5.1 Model predictive control-based BESS scheduling 

The Samsø Energy Academy have published a research paper that is partially supported by the SMILE 
project and the work focusses on Model Predictive Control (MPC) based energy scheduling [5]. Model 
Predictive Control has recently become particularly attractive for the control of smart energy systems 
due to its principles of feedback control and numerical optimization. In effect, MPC can use both 
predictions of future disturbances (e.g., demand fluctuations, weather, etc.) and given requirements 
(e.g., comfort ranges), to anticipate the energy needs of a system and optimize its operations on the 
basis of the defined goals.  

Generally speaking, the MPC technique is based on three elements: (1) an explicit dynamical 
model of the system, which is used to predict the system behavior in response to future actions, (2) 
two time horizons over which the behavior of the system is predicted and controlled (often the two 
horizons coincide), (3) a time step, in which an optimization problem, based on the dynamical model, 
is solved so as to optimize the performance of the system over the chosen control horizon. At each 
time step, the system behavior is observed and information on its state is collected and used to update 
the corresponding dynamical model. Then the optimization problem is stated and solved over the time 
horizon and the results are applied to the system in a closed-loop control fashion. The results of the 
optimization consist in proper control actions that are applied to the system only in the subsequent 
time step. The procedure is then iteratively executed until the end of the time horizon.  

The reason for applying a scheduling algorithm is illustrated by the following examples: (1) If 
the PV forecast for tomorrow is low, it is better to charge the battery from the grid during the night 
when the price is low; (2) even though the wastewater tank is not totally full, it is better to operate the 
pump at night when the price is low. It is to be noted that the MPC approach relies on models (e.g., 
model of the BESS based on the charge level as state variable, model of the wastewater tank based on 
the level as state variable) and prediction data (e.g., PV production curve, wastewater inflow profile, 
energy pricing). The energy import/export for these four approaches with optimal BESS scheduling are 
as shown in Figure 5.3. 

 

Figure 5.3– Energy import and export for four scenarios (kWh) 



 

SMILE – D3.8 Demand response evaluation for the system – Final Version Page 18 of 36 
 

Four scenarios are considered corresponding to four objectives. (1) cost optimization BESS only; (2) 
self-reliance optimization, BESS only; (3) cost optimization with controllable loads included; and (4) 
self-reliance optimization with controllable loads included. 
 
It is to be observed that with given system specifications, there is considerable amount of import from 
grid during peak hours. In general terms, the MPC optimizer without DSM of controllable loads already 
saves operational costs. Whether the savings outweigh the costs of installing and operating the MPC 
optimization remains to be calculated, but the optimizer will provide 6.5% savings on annual costs 
according to the simulation. In addition, DSM of controllable loads improves the savings to 8.5%. 

The smart energy system may change over time, and staff must be trained to change the 
algorithmic constraints accordingly. It will also be necessary to build a fail-safe mechanism, which 
switches to naïve control mode in case of failures. Even the naïve mode utilizes the photovoltaic plant 
well (up to 94%).  

The simulation study indicates that an MPC optimizer improves the economic viability at the 
expense of the self-supply with solar energy. There is trade-off simulation between economy and self-
supply. The improvement of the economy is larger, in percentages, than the loss of the self-supply. 
The economy will be the more important of the two. Should it turn out, in the worst case, that an 
investment in an MPC controller is infeasible, this simulation study has already taught the energy 
manager of the marina of Ballen some advantageous control strategies, which could be implemented 
in an inexpensive manner based on a calendar. The calendar predicts the number of boats according 
to the harbour master’s experience, holidays and time of the year. 
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6 Verification of Algorithms 

The inputs from Route Monkey and Lithium Balance were used by University of Aalborg (Department 
of Energy Technology) to simulate the Marina system for demonstrating the functioning of BESS along 
with PV system for two cases. One is optimal scheduling of BESS for maximizing the self-consumption 
of Solar PV [6] and other case is flexible operation of Marina loads using DR. The electrical network in 
the site is as shown in Figure 6.1. 

 

Figure 6.1– Ballen-Marina electrical network 

6.1 BESS scheduling for maximizing the self-consumption of Solar-PV 

BESS plays a key role for maximizing the energy consumption locally by intelligently defining the 
charging/discharging patterns of BESS with respect to the production of Solar-PV.  The idea is to create 
a real-condition smart grid system with renewable energy sources, storage and electric loads. The 
flagship case concerns the boats that are main consumption in the marina, where they are encouraged 
to be charged with the electricity from renewable energy sources (RES) by an intelligent 
charging/discharging system.  

6.1.1 Optimization formulation 

The mathematical formulation is as given in Eq. 6.1, 
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The objective function is minimizing the power injection from Marina network into grid for constraints 
including BESS charge/discharge rates, state of charge limits etc., as given in Eq. (6.1). The optimization 
problem is solved using integer linear programming function in Matlab. The real data set from Jul till 
Sep 2019 that is provided by Samsø partners was used. Two cases were simulated, Case-1 is optimal 
scheduling of BESS for maximizing yield from Solar-PV and Case-2 is optimal scheduling of flexible loads 
using DR and BESS for maximizing the Solar-PV production. 

6.1.1.1 Simulation results 

The total Marina consumption data received is as shown in Figure 6.2. The estimated Solar-PV 
production from irradiance data is shown in Figure 6.3 .The import/export of energy obtained from 
the optimization problem is shown in Figure 6.4. It is very clear from Figure 6.4 that with optimal 
scheduling of BESS the injection is reduced.  The SOC of the BESS is shown in Figure 6.5. The BESS is 
charged for two conditions, a) Charge when there is excess PV and b) Charge from grid when the 
forecasted Marina load is higher than production combined with storage. In the formulation, last 
constraint shows charging of BESS for condition b). 

  
Figure 6.2–Total Marina consumption Figure 6.3 – Estimated Solar PV production of 60 kWp 

 
 

Figure 6.4–Electricity injection to public grid Figure 6.5–SOC of BESS 

 
The simulations results giving the amount of energy and its associated costs and revenue for 
import/export, respectively are given in Table 6.1. The last scenario is interesting to analyze as the 
BESS is charging whenever there is excess solar-PV production and also from grid if the future 
forecasted peak demand exceeds the available generation (Solar-PV+BESS). In scenario-4, the import 
is more than in scenario-3, but the cost of import is less due to the fact that import has taken place 
only during off-peak hours. 
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Table 6.1– Costs and revenue for the import/export from Marina 

Scenario Energy import Energy export 

kWh € kWh € 

Without PV-BESS 41588 98501 - - 

With PV and without BESS 30991 14231 6276.3 426.93 

With PV-BESS and charge from only excess PV 24543 10915 682.36 20.470 

With PV-BESS and charge from both excess PV and grid 25236 7918.8 521 15.63 

 
In this case, optimal BESS scheduling is carried out for increasing the utilization factor of Solar-PV 
production. The results show that there is considerable reduction of dependence on the main grid, 
making Samsø-Marina self-sustainable most of the time during a day. For the Marina site, the buying 
price is 0.21 e/kWh and the selling price is 0.03 e/kWh and the electricity buying price during peak 
hours is considered to be 1.17 e/kWh. The price data is taken from D3.4 “Requirements Specification” 

6.2 Optimal scheduling of boats and other flexible loads using DR and BESS 

The data set for boat consumption is divided for four piers at aggregated level as shown in Figure 6.6.  

 

Figure 6.6– Aggregated piers at Marina site 

The aggregated boat consumption on east, inner, north and south piers is as shown in Figure 6.7, Figure 
6.9, Figure 6.10 & Figure 6.10 respectively. 
--- 

  
                    Figure 6.7– Boats load on east pier                  Figure 6.8– Boat load on inner pier 
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Figure 6.9– Boat load on north pier Figure 6.10– Boat load on south pier 

 
The peak load is coming out to be 125 kW in the mid of July 2019, due to a greater number of tourist 
sailors. Other flexible loads include heat pump at harbour master’s office of 2.5 kW, sauna in the 
service building of 15 kW and an electric vehicle (EV) owned by Samsø municipality of 11 kW charging 
capacity. The EV is used only by harbour master and his staff. The electricity spot price for the year 
2016 that is provided by Samsø Energy Academy is as shown in Figure 6.11. 

 

Figure 6.11– Elspot prices 

With the data, the Marina load forecast, Solar-PV forecast and Elspot prices, again optimization 
problem is formulated and is given as algorithm. 

6.2.1 Optimization problem 

The objective function is to find the optimal scheduling of flexible loads using DR and BESS for 
maximizing the self-consumption of Solar-PV. The intelligent algorithm is as follows, 

▪ Collect data of forecasted load, Solar-PV and Elspot prices.  
▪ Adjust the loads and charge the BESS, to match with Solar-PV production. 
▪ Switch ON flexible loads,  

o Heat pumps, depending upon season,  
▪ In summer, if temperature rises above 28 degrees 
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▪ In winter, if temperature falls below 14 degrees 
o Sauna, depending upon outdoor temperature (Temp<24 degrees)  
o EV, when there is excess PV and battery is full, only in the daytime 

▪ Send green/yellow signals to boat loads, which will be associated with discounts when they 
respond back. Case -1 if they respond, Case-2, If they chose not to respond. 

▪ Repeat the above steps for daily scheduling. 

6.2.1.1 Simulation results for DR 

The DR that is defined for this Ballen-Marina case is Time of Use (TOU) DR. This means that the 
electricity price is decided by the usage time in a day. The algorithm is demonstrated for single day 
case i.e., July 16th as shown in Figure 6.12, Figure 6.13 and Figure 6.14. It can be observed from the 
Figure 6.12, the spot price witnessed quick rise from 17:00 hrs till midnight, which will be an interesting 
scenario to analyse where the Solar-PV is available only until 18:00 hrs and in addition, power 
consumption from boats is high during this period. The total energy yield from Solar-PV is 368.81 kWh 
on July 16th and the profile is shown in Figure 6.13, whereas the total energy consumption from boat 
loads is 1285.08 kWh. For the current installation capacity, the production from Solar-PV cannot 
completely meet the total load but can handle the peak load to a certain extent. 

  
Figure 6.12– Electricity spot price to buy from grid Figure 6.13– Solar-PV production profile 

  

Figure 6.14– Total boat load before DR Figure 6.15–EV load switch ON 
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Figure 6.16–BESS SOC in ‘%’ Figure 6.17– Grid import  

 
It is to be noted that for the considered day, the EV as a part of flexible is switched ON to charge from 
excess solar-PV generation after meeting the boat load. Also, the BESS is charging both from solar (if 
there exists excess generation after meeting the Marina load) and the grid (during Off-peak hours). It 
is obvious that there is large amount of load is met by importing from grid due to the limitation of 
present Solar-PV installation. But it is a good idea to use BESS and DR for maximizing the self-
consumption of Solar-PV for both domestic and commercial installations. 
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7 DR evaluation and market perspectives in Marina 

This section describes the actual implementation of demand response and market perspectives as 
realised by simulations in the previous sections. The battery system on the Ballen’s marina is grid 
connected, which means it can exchange power with the public grid. It is still unusual in Denmark to 
have a large battery connected with the distribution grid. The overview in Figure 7.1 shows the electric 
connections between the grid and the components of the system. In the default mode, the 
photovoltaic plant produces electricity for boats and other electric loads. The battery stores excess 
electricity on sunny days. The battery delivers it back during periods of shortage, for instance during 
the night. In default mode the battery operates as a one-day buffer storage. The following power 
balance governs the power flow (Kirchhoff's node law), 
    PV + battery + grid = demand 
The PV production is somewhat unpredictable, so is the demand. Therefore, the battery and the grid 
both act as balancers in the power balance equation. They can both react fast enough, when the PV 
production differs from the demand, which is nearly always the case. The demand usually comes from 
yachts, motorboats, and land load such as streetlights and pumps. In addition, the visiting sailors and 
the citizens can use the sauna, which, electrically speaking, is a large load (15 kW). Five heat pumps 
cool, heat, or dry three buildings (0.6 kW each). 

Figure 7.2 shows a grave mismatch between solar production and load. The PV production 
increases during the sunny hours of the day, where the production exceeds the consumption. The 
figure shows two situations: shortage of PV – when the PV supply is lower than the demand – and 
excess PV – when the PV supply is larger than the demand. 
The generated excess power (kW) is over time stored as energy in the battery (kWh). Figure 7.3 shows 
the battery's state-of-charge (SOC) on the same day. In case of PV shortage, the battery level decreases, 
opposite in the case of PV excess. The first crossing point between PV and demand (Figure 7.2) is the 
time instant where the battery starts to charge (Figure 7.3). The second crossing point (Figure 7.2) is 
where the battery starts to discharge (Figure 7.3). A plot of the inverter flow would show the flow 
changes its sign. The battery level at time 01:00 results from previous days' history. All times refer to 
the end of the hour. For instance, the SOC at 01:00 is the result of the SOC at midnight and the flow 
streams between midnight and 01:00. The plot covers 24 hours, so it starts at 01:00, and it ends at 
24:00. The battery meets its objective, in this example, because the marina does not exchange power 
with the public grid at all. 

The system has a supply side and a demand side as shown in Figure 7.1. All components 
connect to a common busbar on the marina side of the public meter. The upper part, above the busbar, 
is the supply side, and the lower part, below the busbar, is the demand side. The inverter acts as a two-
way valve for the battery. It controls whether to charge, discharge, or leave the battery idling. The 
inverter controls the flow between the two sides. Even the demand side is controllable, to some extent. 
It is possible to control the sauna and one heat pump, remotely. They are controllable loads, that can 
be turned on or off at times when it is useful. For example, the following is a rule of thumb for demand 
side control: 
    IF (PV production > demand) and (SOC is high) THEN dry shower room with the heat pump from 
14:00 to 16:00. Another option is to preheat the sauna early in the morning if the weather forecast 
predicts excess PV energy during the following afternoon. 
 
There are three objectives for the demand side control according to the following priority list: 

1. To maximise the sailor’s comfort, 

2. to minimise the operating cost, and 

3. to maximise the renewable energy share. 
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Priority 1 is a matter of service. The marina is a service enterprise, and the municipality wishes to see 
more visiting boats in the marina to improve its economy. Priority 2 is more important to the 
municipality than priority 3, because the economy is evaluated every year at a budget seminar 
between the politicians. Priority 3 is a nice-to-have objective, but not necessary for the operation. 
 
 
 

 

Figure 7.1. Overview of the solar battery system for the Ballen marina.  

 

  

Figure 7.2. Demand and PV production on a sunny 
day. The PV production was highest around 11 that 

day. The sauna caused two distinct peaks in the 
consumption. 

Figure 7.3. The battery's state-of-charge on the 
same day. The end state is higher than the initial 

state thanks to excess PV energy. 

 
The following subsections describe the actual implemented control methods for both BESS and flexible 
loads including sauna, heat pump etc. The developed control algorithms have shown that the BESS 
storage system can nearly double the effectiveness of the PV system. However, the complex yearly 
demand profile makes it difficult to fully utilize the BESS system with smart algorithms and forecasting. 
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7.1 Controllable loads – control algorithm 

Lithium Balance developed graphical user interface (GUI) and application programming interface (API) 
for the controlling loads: heat pump and sauna, as shown in Figure 7.4. The electricity price is 
illustrated with colored bar chart, which indicate the high (red colour) and low-price (green colour) 
region of the day.  
 

 

Figure 7.4. SMILE control settings graphical user interface. 

After the load characteristic has been studied and in agreement with Samsø Energy Academy, the 
following control strategy has been implemented as described in Table 7.1 and Table 7.2. 

Table 7.1. Samsø heat pump control strategy (turn off only).) 

Condition Comment 

For h=23:00pm – 4:00am 
Turn off request every two hours. 
This means send turn off request 3 times in the 
night at 23.00, 1.00, 3.00. 

No need to maintain temperature during the 
night. 
 

For h in range (5, 23): 
If El_Price (h) >= 75% top EL price and 

Δh >= 4: 
Turn off for two hours 

Constrain to turn off at high price and assure 
user comfort. 

Δh means the time in between the 2 requests 
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Table 7.2. Samsø sauna control strategy with annual card scenario (turn on only). 

Condition Comment 

For h in range (3, 6): 
Turn on sauna when the 2 continuous 
hours price combination are the lowest 
in this period 

For h in range (6, 14): 

If Δh >= 5 and SoC >= 80% and PPV(t) > 
Pload(t): 

Turn on sauna 
For h in range (14, 22): 

If Δh >= 5: 
Turn on sauna when the 2 
continuous hours price are the 
lowest in this time period 

 

Constrain to turn on at low price, high battery 
charge and assure user comfort.  
 
Between 3.00 and 5.00, sauna will be turned on 
once for the morning user, 
During the day (6.00 to 13.00) when battery 
charge is high, sauna will be turn on once more. 
But the second turn on time will be at least 5 
hours later than the previous time.  
During the evening (14.00, 21.00), sauna will be 
turned on once more for night user. 
 
This ensures sauna will be turned on at least 2 
times a day, and with maximum 4 times a day. 

 
The heat pump is a small load with consumption of 1kW power. It has a build-in software (Tado) and 
can regulate the room temperature, and this will ensure the user comfort. On Lithium Balance side, 
the main control will be focusing on lowering the energy cost. This means the heat pump will be turned 
off in unnecessary time period and during high price periods. Lithium Balance has set up 
communication to the heat pump digital control software (Tado). It is able to switch the heat pump 
between auto mode and off. The intention of heat pump control is to avoid having it running during 
high price region.  
The control of sauna is slightly different. Sauna is a lager load, around 15 kW. Lithium Balance is only 
able to turn on the sauna through remote control, and it will be switched off by itself after 1-2 hours. 
Based on the harbor operation, the sauna will be operated with an annual subscription bases, this 
means user pattern is important for the control and Lithium Balance should take care of both user 
comfort and economic while controlling to the sauna. The sauna communication has been set up 
through calling the REST API with credential provided by Compusoft.   
  

7.2 Optimal battery control 

Depending on the situation, it may be an advantage to time-shift a necessary exchange with the public 
grid. For instance, it saves money to delay buying from the grid until the price is low. There are two 
main optimisation criteria. 

• Technical optimisation. Maximise the share of renewable energy, which is equivalent to 

minimising the exchange (import and export) with the grid. 

• Economic optimisation. Minimise the overall cost of buying and selling energy to the grid.  

They lead to different results, generally; an optimal share of renewable energy is generally different 
from the most economical solution. There may be other criteria as well, such as minimising just export 
to the grid letting import free. In either case, an optimiser needs foresight; more precisely, it needs 
knowledge of the future prices, an estimate of the future PV production, and an estimate of the future 
demand. If the battery is large enough, it absorbs uncertainties in the forecasts. 
With a 24-hour time horizon, it is almost impossible to find an optimal solution by hand calculations 
and intuition alone. The search space is too large. However, the problem is a linear programming 
problem, which can be solved in several programming languages. 
While the optimiser solves the problem, it also points to a boundary condition to consider. 
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• SOC at 00:00. The initial level of charge affects the optimisation severely. For instance, if the 

battery is full at midnight, it may be necessary to export power to the grid later. Oppositely, if 

the battery is empty at midnight, it is necessary to import power from the grid to cover the 

nightly load. 

• SOC at 24:00. This is the end state-of-charge. If this is free, the optimiser may decide to sell all 

stored energy to increase income. The end state is the initial state of the following day, and it 

is prudent to leave some energy for the following night.  

The optimiser impressively finds a solution, even when fixing the initial and the end states. An online 
program would have to rely on forecasts of demand and PV production. The spot price, however, is 
known from the power exchange Nord Pool at around 12:00 for the following day’s 24 hours. The 
sampling period is 1 hour, and each variable will have a time index k associated with it (k = 1, 2, ..., 24). 
The data are discrete-time measurements because the energy is accumulated hour-by-hour. Grid 
import (positive) must be separate from grid export (negative) because they have different prices. The 
battery state-of-charge and the power flow through the inverter are also unknown. 
There are two sets of equality constraints. The first set concerns the dynamics of the state-of-charge, 
    s(k) = s(k-1) + f(k) 
where 

• s contains the states-of-charge of the battery (24-by-1 vector), and 

• f contains the inverter flow (24-by-1 vector). 

The equation just expresses that the increase in state-of-charge at the end of period k equals the state-
of-charge at the beginning of the period plus the energy that flowed through the inverter during the 
period k. The second set concerns the power balance, 
    f(k) + gi(k) + ge(k) + p(k) = d(k)  
where 

• d(k) is the demand during the kth hour, 

• p(k) is the PV production, 

• gi(k) is the grid import, and 

• ge(k) is the grid export, which will have a negative sign. 

All amounts are in kWh per hour. The excess energy flows to the battery, with a contribution from the 
grid. The grid balances any mismatch between production and demand. 
The optimiser must find a solution within certain bounds: 

• The state-of-charge is bounded by 0 ≤ s ≤ 211 kWh, 

• the inverter flow is bounded by -49 ≤ f ≤ 49 kW, 

• the grid import is bounded by 0 ≤ gi ≤ 500 kW, and 

• the grid export is bounded by -49 ≤ ge ≤ 0 kW. 

The cost vector (EUR/kWh) contains the buying and selling prices toward the grid. The buying price is 
the spot price on the Nord Pool market plus taxes and fees. The selling price is the bare spot price. The 
buying price is, roughly, seven times the selling price. However, if one wishes to optimise, not cost, but 
grid import or grid export, the associated costs can be set to 0 or 1 as fitting. 

Linear programming is attractive, because it finds an optimal solution to a complex problem, 
while considering prices and constraints. It finds a solution, not by a mathematical formula, but by 
searching a space of feasible solutions. However, the search space is limited, and the elapsed time for 
finding a solution is relatively short. However, the accuracy depends on forecasts, which may be 
inaccurate. It is difficult to predict the boat arrivals to the Ballen marina for every hour of the day 24 
hours ahead. It is also difficult to predict the solar production every hour during the daylight period of 
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the following day. Even though linear programming is a strong method, it is jeopardised by poor quality 
of forecasts.  
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7.3 Peak load from boat loads scenario 

The real time simulation of a scenario where peak load is observed from boats on a day in July 2020. 
The voltage profile at various charging stations without demand response are shown in Figure 7.5, 
where the voltages are falling beyond operational limits i.e., 0.95 p.u. – 1.05 p.u. 

 

Figure 7.5: Voltage profiles at various charging stations without optimal boat load schedule 

With the optimal scheduling of boat loads, the voltage profiles were brought back to normal operating 
limits as shown in Figure 7.66. It is clear that there exists a fair chance that Marina grid can be subjected 
to voltage limit violations with uneven distribution of loads at various piers. It is an important grid 
constraint that has to be considered while considering any of the three objectives including sailor’s 
comfort, cost effective operation and maximizing solar-PV utilization. 

 

Figure 7.6: Voltage profiles at various charging stations with optimal boat load schedule 

7.4 Solar-PV forecasting method 

DTI has developed an alternative forecasting methods with respect to the one of Route Monkey. The 
forecasting of solar-PV production using Route monkey’s algorithm is as shown in Figure 7.7. It can be 
observed that the forecasted value always underestimates the peak power leading to unwanted 
import from the grid that adds to cost of operation. A simple forecast method has been proposed by 
DTI as shown in Figure 7.8, where the solar profile is assumed to be identical to the previous day.  
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Figure 7.7: Route Monkey’s forecast methods using different lead time compared to PV measurement 

 

Figure 7.8: Simple solar-PV forecast by DTI 

However, the forecasting method proposed by DTI proved highly effective at capturing the seasonal 
changes since these vary on a longer time scale but resulted in higher inaccuracies for days with 
cloudiness and unforeseeable weather. From comparison with the two forecasting models the result 
is a similar accuracy is achieved with an average deviation of 0.48 and 0.53 kWh for the simple forecast 
and the historical forecast, respectively. 

7.5 Evaluation of methods 

Several methods that have been considered in the SMILE project were evaluated with respect to 
advantages and disadvantages. 

• Linear programming: Packages exist in several languages, it is computationally fast, and it finds 

an optimal solution. The constraints can be tailored to direct the method to find a technical 

optimum or an economic optimum. It can be applied to historical data to provide a reference 
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for comparisons [9]. However, the forecasts have apparently been unreliable (confidential 

deliverables D3.7 and D5.7), and the method was abandoned for real-time use. 

• Machine learning for forecasting: These methods, including neural networks, do not require 

any assumptions about an underlying model structure. They need a set of training data, and 

other sets of test and validation data to estimate the accuracy of the extracted model. 

However, the extracted model is a ‘black box model’, which is impossible to interpret 

physically. The method gave poor forecasts, possibly because it did not find regular patterns 

in the marina load and the PV production.  

• Autoregressive model for load prediction: This method uses previous data from a time series 

to predict the next future value. It relies on the ‘least squares method’ to estimate the 

parameters of the model, and that is computationally fast. Tests indicate that it finds a good 

load prediction, for instance, 79 percent correct on the 17th of July. However, it requires trial-

and-error tuning to find the best model structure. It cannot foresee events, because it relies 

on past values only; the only chance to predict an event is if it is recurring at the same time, as 

a pattern. It is not documented in SMILE. 

• Model predictive control: The method uses the past to predict the future, and it then finds an 

optimal solution. But it only uses the solution one time-step ahead. Then it includes real data 

measurements to make the next prediction and optimal control. It continues step-by-step. The 

predictions are better, because it uses actual data as soon as they appear [7, 8]. Although the 

intermediate solutions are optimal, there is no guarantee of a globally optimal solution. 

• Price-based control: To overcome unreliable forecasts, a buying and selling strategy can be 

based on the known spot prices. If one knows beforehand that it will be necessary to buy from 

grid during the next day’s 24 hours, the algorithm buys on the times of the day when the buying 

price is low. It would be feasible to implement as a time-of-day tariff, but the anthropological 

study showed that tariffs are unpopular (see confidential deliverable D5.7). The method does 

not consider all the constraints known from linear programming. Furthermore, the span 

between the highest and lowest price the following day must be large enough to compensate 

for the cycle loss in the battery system (15 percent). 

• Rule-based control: IF-THEN rules are versatile and can be applied in almost every situation. 

When the conditions in the IF-part are fulfilled, the actions in the THEN-part are executed. The 

price-based control is based on rules with logical conditions. However, the rules in Lithium 

Balance dashboard are only accessible to the design engineer, not to the expert operator or 

any other user. Rule-based control gives no guarantee of optimality, it is a heuristic approach 

based on experience. It is a fallback solution when the more mathematical methods fail. 

• Controllable loads strategy: The controllable loads (sauna, heat pump) are turned on or off at 

favourable times, presumably without disturbing the users. It works well in theory, in 

combination with for instance linear programming. However, if these methods fail for other 

reasons, the remaining possibility is manual scheduling in the calendar. This is implemented in 

Lithium Balance dashboard. The controllable loads are in the order of 15 kW in total, which is 

small compared to the capacity of the battery (original nominal 240 kWh, adjusted to 237 in 

datasheet kWh, useable part 210 kWh), and the effect is weak. In fact, the battery itself is the 

most powerful controllable load, and it is possible to force it to discharge or charge at times 

defined in the calendar.  

• Voltage violation strategy: A part of the marina is susceptible to low voltage, which could 

disturb the equipment on the boats. The proposed solution is to force the boats to change 

their pattern of usage, to shave peaks. However, this is unpopular, and a better solution would 
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be to rewire the cables in the distribution board, to distribute the load evenly on all the main 

fuses. 

• The EnergyPLAN/energy system perspective: the energy system analysis in WP8 suggest 

operation of the BESS according to technical feasibility, hence, renewable energy is given 

priority over imports, yet also system integration across the whole island’s energy system is 

given attention, where excess electricity from wind or PV can be used to charge vehicle 

batteries or heat water in a thermal energy storage. The system perspective has limits for the 

DR evaluation of the particular marina set-up, yet, variable tariffs according to local production 

and demands is recommended to ‘force’ flexibility in line with fluctuating production through 

DR, where availability to production, storage and consumption technology is fundamental. 

[10]. 
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8 Conclusions 

This deliverable dealt with the demand response evaluation for Ballen-Marina of Samsø demonstrator.  
First of all, the envisage DR services were presented. Then the forecasting algorithms and the scheduler 
to be used for Samsø demonstrator in both simulation and real-time environments were illustrated. 

In accordance with this task, both Samsø Energy Academy and Aalborg University (AAU/ET) have 
devised the algorithms for optimal BESS scheduling, which can be implementable at the Ballen-Marina 
demonstrator. In particular, the results in section 6 illustrates the method for not only maximizing the 
Solar-PV self-consumption but also optimal scheduling of flexible loads using demand response and 
BESS through computer simulations. Due to covid situation, the real time evaluation took place in the 
summer 2021, and therefore in this deliverable D3.8, the real demand response systems have been 
now included by amending the preliminary draft version of this deliverable (D3.6) prepared in April 
2020.  

Indeed, Section 7 is included in this version describing the actual implementation of demand 
response programs at Ballen-Marina and evaluating the proposed methods in market perspectives. 
Lithium Balance has made a power purchase calendar for the Marina, which gives the spot price details 
that helps the harbour master in taking reliable decisions. Through the Lithium Balance studies, it is 
determined that the day-ahead forecast of both consumption and production profiles will be leading 
to better cost-efficient operation of Marina grid that considering hourly basis, where any prediction of 
sun-deficit for the upcoming day can be filled up between midnight before day and six in the morning 
same day. All in all, several methods have been evaluated by identifying pros and cons.  

Apparently, it is difficult to forecast load and PV production accurately enough to bring in 
powerful methods such as linear programming and least squares optimisation. On the other hand, it is 
possible to perform manual control through the scheduler (Lithium Balance calendar), which is an 
impressive practical achievement.   

 An alternative approach is to change viewpoint from hourly based forecasts to daily based 
forecasts. Daily forecasts are more accurate; being summations over 24 hours, they absorb zero-mean 
variance. Most of the days experience PV shortage, and most of the days the buying price is low 
between midnight and 6 in the morning. It is therefore more or less safe to always buy during this 
period of the day. In case of PV excess (which happens in springtime after equinox, but not often) the 
only option is to drain the battery as much as possible by turning controllable loads on. This is a 
heuristic strategy and there is no guarantee it will always improve the default mode of operation. The 
PV production is already utilised to 89 percent in buffer mode, so there is only 11 percent left for 
improvements. This indicates that it will be difficult and expensive to capture the remaining 
percentages by optimisation. 
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